On the complexity of making a distinguished vertex minimum or maximum degree by vertex deletion
نویسندگان
چکیده
In this paper, we investigate the approximability of two node deletion problems. Given a vertex weighted graph G = (V,E) and a specified, or “distinguished” vertex p ∈ V , MDD(min) is the problem of finding a minimum weight vertex set S ⊆ V \ {p} such that p becomes the minimum degree vertex in G[V \ S]; and MDD(max) is the problem of finding a minimum weight vertex set S ⊆ V \{p} such that p becomes the maximum degree vertex in G[V \ S]. These are known NPcomplete problems and have been studied from the parameterized complexity point of view in [1]. Here, we prove that for any ǫ > 0, both the problems cannot be approximated within a factor (1− ǫ) logn, unless NP ⊆ Dtime(n ). We also show that for any ǫ > 0, MDD(min) cannot be approximated within a factor (1 − ǫ) logn on bipartite graphs, unless NP ⊆ Dtime(n ), and that for any ǫ > 0, MDD(max) cannot be approximated within a factor (1/2 − ǫ) logn on bipartite graphs, unless NP ⊆ Dtime(n ). We give an O(log n) factor approximation algorithm for MDD(max) on general graphs, provided the degree of p is O(log n). We then show that if the degree of p is n−O(logn), a similar result holds for MDD(min). We prove that MDD(max) is APX-complete on 3-regular unweighted graphs and provide an approximation algorithm with ratio 1.583 when G is a 3-regular unweighted graph. In addition, we show that MDD(min) can be solved in polynomial time when G is a regular graph of constant degree.
منابع مشابه
Graph and Election Problems Parameterized by Feedback Set Numbers
This work investigates the parameterized complexity of three related graph modification problems. Given a directed graph, a distinguished vertex, and a positive integer k, Minimum Indegree Deletion asks for a vertex subset of size at most k whose removal makes the distinguished vertex the only vertex with minimum indegree. Minimum Degree Deletion is analogously defined, but deals with undirecte...
متن کاملOn Making a Distinguished Vertex Minimum Degree by Vertex Deletion
For directed and undirected graphs, we study the problem to make a distinguished vertex the unique minimum-(in)degree vertex through deletion of a minimum number of vertices. The corresponding NP-hard optimization problems are motivated by applications concerning control in elections and social network analysis. Continuing previous work for the directed case, we show that the problem is W[2]-ha...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملOn the extremal total irregularity index of n-vertex trees with fixed maximum degree
In the extension of irregularity indices, Abdo et. al. [1] defined the total irregu-larity of a graph G = (V, E) as irrt(G) = 21 Pu,v∈V (G) du − dv, where du denotesthe vertex degree of a vertex u ∈ V (G). In this paper, we investigate the totalirregularity of trees with bounded maximal degree Δ and state integer linear pro-gramming problem which gives standard information about extremal trees a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Discrete Algorithms
دوره 33 شماره
صفحات -
تاریخ انتشار 2015